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Abstract

Airborne measurements of acetone, methanol, PAN, acetonitrile (by Proton Transfer
Reaction Mass Spectrometry), and CO (by Tunable Diode Laser Absorption Spec-
troscopy) have been performed during the Mediterranean Intensive Oxidants Study
(MINOS, August 2001). In the course of the campaign 10 biomass burning plumes,5

identified by strongly elevated acetonitrile mixing ratios, were found. The character-
istic biomass burning signatures obtained from these plumes reveal secondary pro-
duction of acetone and methanol, while CO photochemically declines in the plumes.
Mean excess mixing ratios – normalized to CO – of 1.8%, 0.20%, 3.8%, and 0.65%
for acetone, acetonitrile, methanol, and PAN, respectively, were found in the plumes.10

By scaling to an assumed global annual source of 663–807 Tg CO, biomass burning
emissions of 25–31 and 29–35 Tg/yr for acetone and methanol are estimated, respec-
tively. Our measurements suggest that the present biomass burning contributions of
acetone and methanol are significantly underestimated due to the neglect of secondary
formation. Median acetonitrile mixing ratios throughout the troposphere were around15

150 pmol/mol; this is in accord with current biomass burning inventories and an atmo-
spheric lifetime of ∼6 months.

1. Introduction

Biomass burning is among the largest anthropogenic air pollution sources, and it im-
pacts the atmosphere on a global scale. The amount of biofuel burned each year is20

estimated to be of order 8600 Tg (+/−50%, Andreae and Merlet, 2001). Along with
the emission of large quantities of CO2, CO, organic aerosols, and black carbon a myr-
iad of other organic compounds are emitted at lower but nevertheless significant levels
(Yokelson et al., 1999; Goode et al., 2000; Andreae and Merlet, 2001; Holzinger et al.,
1999; Simoneit, 2002).25

Trace gases like acetone, carbon monoxide, methanol, and peroxyacetyl-nitrate
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(PAN) play important roles in atmospheric chemistry, and all are directly emitted and/or
produced in biomass burning plumes. Acetone is an important source of HOx radicals
(Singh et al., 1995) in the upper troposphere. Carbon monoxide together with methane
controls the atmosphere’s reactivity in remote areas. Methanol is one of the most sig-
nificant organic compounds in the atmosphere, having an annual atmospheric carbon5

turnover that is exceeded only by methane and isoprene. The photchemical product
PAN is stable to photolysis and HO oxidation in the free troposphere, but decomposes
rapidly at temperatures above 15–20◦C. In this way PAN and other organic-nitrates
have the potential to sequester, transport and release nitrogen oxides (NOx) at great
distance from the source.10

In this study we investigate aged biomass burning plumes observed over the Mediter-
ranean Sea. Using acetonitrile as a marker for biomass burning we found higher levels
of acetone and methanol than in young or experimental fire plumes. Our results sug-
gest that biomass burning is a significant source of acetone, methanol and PAN.

2. Experimental15

The Mediterranean Intensive Oxidant Study (MINOS) was conducted in August 2001.
Fourteen measurement flights up to altitudes of 13 km were performed with a twin-
jet Falcon aircraft operated by DLR (German Aerospace Centre), from Heraklion air-
port, Crete (35◦ N, 25◦ E); for details about MINOS visit http://www.mpch-mainz.mpg.
de/∼reus/minos/. Carbon monoxide was measured by Tunable Diode Laser Absorp-20

tion Spectroscopy (TDLAS) with an accuracy of 1% and a precision of 1.5 nmol/mol
(Wienhold et al., 1998). Acetone, acetonitrile, methanol and PAN were measured by
Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). Like most VOCs with proton
affinities higher than water, acetone, acetonitrile and methanol are detected at their pro-
tonated masses 59, 42, and 33 amu, respectively (Lindinger et al., 1998). Protonated25

PAN, however, reacts with water to produce CH3C(O)OOHH+ at mass 77 (Hansel and
Wisthaler, 2000). The collision energies between ions and molecules in the PTR-MS
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were minimised in order to prevent sensitivity loss due to the fragmentation of proto-
nated PAN. Typical values for the ratio E/N were 90 Townsend (Td; 1 Td=10−17 Vcm2).
Comparison with a second PTR-MS operated under standard conditions (120 Td) by
the University of Utrecht showed good agreement between the two instruments (de
Gouw et al., submitted, 20041). The instrument background signal was measured ev-5

ery few minutes by converting VOCs efficiently to CO2 and water in a heated stainless
steel tube (350◦C) filled with a platinum catalyst. Based on atmospheric chemistry con-
siderations (Williams et al., 2001) and from a GC-PTR-MS analysis of several Teflon
bags filled in-flight (de Gouw et al., submitted, 20041) we are confident that at masses
33, 42 and 59 no significant contributions were detected (>10%) from molecules other10

than methanol, acetonitrile and acetone, respectively. Potential interference from other
molecules at mass 77 (PAN) was assessed by applying an additional thermal converter
every few minutes. The converter was operated at 120◦C and thermally destroyed PAN
at this temperature; other compounds were found to pass through the converter with-
out losses. Using the PTR-MS technique trace gas concentrations can be calculated15

according to the relation [VOC·H+]≈[H3O+][VOC] kVOCt, where t is the reaction time
and kVOC is the reaction rate constant for the proton transfer from H3O+ to compound
VOC. Note that all parameters in this relation are known and no in-flight calibration was
needed. However, to ensure that all relevant parameters, namely the reaction rate con-
stants, reaction time and transmission of the mass spectrometer were accounted for20

correctly, we cross checked the applied calculations and corrections by measuring a
gravimetrically prepared calibration gas standard (Apel-Riemer Enviromental Inc.) with
a certified accuracy better than 5% for methanol, acetone and acetonitrile. In the case
of PAN it is difficult to calculate concentrations because more than one ion-molecule
reaction is involved. In laboratory studies we investigated how the detection sensitiv-25

ity of PAN is influenced by parameters such as humidity and pressure. The PTR-MS

1de Gouw, J. A., Warneke, C., Holzinger, R., and Williams, J.: Inter-comparison Between
Airborne Measurements of Methanol, Acetonitrile and Acetone Using Two Different Configured
PTR-MS Instruments, Int. J. Mass., submitted, 2004.
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signal attributed to PAN was calibrated using a commercial GC-ECD (Meteo-Consult)
which was calibrated using a synthesised PAN standard, the concentration of which
was determined by measuring NO after the PAN was passed through an NOy con-
verter. The synthesis and calibration method is described in detail elsewhere (Williams
et al., 2000). The overall accuracy for all compounds measured with PTR-MS is better5

than 20% (40% for PAN), with reservations regarding possible interference to the signal
at m77 coming from molecules other than PAN.

The precision of the PTR-MS data is dependent on integration time, background
signal and mixing ratio. Detection limits, determined as 3σ above background, for
acetone, acetonitrile, methanol and PAN were 100, 20, 500, 50 pmol/mol respectively;10

and typical values for the precision at levels of 50, 500 and 2000 pmol/mol were as
follows: 30, 10, 5% for acetonitrile; –, 25, 10% for acetone; –, 70, 20% for methanol;
and 60, 20, 10% for PAN, respectively.

3. Results and discussion

3.1. Biomass burning plumes15

In the course of the MINOS campaign we identified 10 biomass burning plumes at
altitudes between 1 and over 11 km; the plumes were distributed over the eastern
Mediterranean region (Fig. 1). From the 10 plumes, six (i.e. those below 2 km and
east of 24◦ E) are likely to originate from agricultural burning, a great deal of which
was occurring in Eastern Europe at the time of the MINOS campaign. According to a20

trajectory analysis the age of these plumes was about 2–3 days (Traub et al., 2003).
It was not possible to identify the source region of the other plumes. Plumes were
identified by significant peaks in the acetonitrile volume mixing ratio; i.e. the difference
in concentration between peak and neighbouring points exceeded at least three times
the standard deviation of the neighbouring points.25

A case study of a biomass burning plume encountered towards the end of flight 10
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(19 August 2001; 08:15–11:10 UTC (=Local time −3 h)) is presented in Fig. 2. The left-
hand chart depicts cruising altitude and acetonitrile volume mixing ratios. The biomass
burning plume is highlighted with a grey circle; in this region a good correlation oc-
curs between acetonitrile and acetone (n=70, r2=0.85), CO (n=54, r2=0.69), methanol
(n=70, r2=0.69), and PAN (n=60, r2=0.40) (right-hand chart).5

The time, position, and altitude of all biomass burning plumes is given in Table 1,
together with acetonitrile mixing ratios and normalized excess mixing ratios (NEMR)
of acetone, CO, methanol, and PAN. The NEMRs were calculated by subtracting the
local background mixing ratios just outside the plume from in-plume values; these ex-
cess mixing ratios (EMR) were subsequently normalized by division by the EMR of10

acetonitrile. A mean NEMR was calculated for each compound by forming the geo-
metric mean from all NEMRs of individual biomass burning events (Table 1). To avoid
overestimation because of outliers we favoured the geometric mean.

In a young biomass burning plume the NEMR is equivalent to the emission ratio (ER),
however, NEMRs obtained here may be different because the plumes were aged and15

organic species might have been produced or destroyed. In Table 2 NEMRs based on
CO are shown together with emission ratios from previous laboratory and field studies.
Emission ratios of ∼1.2 mmol acetonitrile per mol CO have been consistently reported
from several laboratory and field experiments. Significantly higher emission ratios have
been reported from Indonesian fuels (Christian et al., 2003) of which the nitrogen con-20

tent was higher than in fuels from other regions.
During the MINOS campaign we observed a mean NEMR of 2.0 mmol acetonitrile

per mol CO which is ∼50% higher than most reported values from other studies (Ta-
ble 2). This may reflect a higher nitrogen content of the fuels causing the observed
plumes. Another plausible explanation for this discrepancy is photochemical degrada-25

tion of CO since the plumes encountered over the Eastern Mediterranean were consid-
erably aged. On average 24 h mean concentrations of HO of 4.5×106 molecules/cm3

were measured at the Finokalia ground station in Crete during the MINOS campaign
(Berresheim et al., 2003). If such high values are representative for the region, 24%
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of the CO in a biomass burning plume would be removed within the assumed travel
time from the source region northeast of the Black sea (3 days), whereas mixing ratios
of acetonitrile would not be reduced significantly on this timescale. The chemical CO
loss is partly balanced by secondary CO production; however, the sum of compounds
(based on Andreae and Merlet, 2001) that might form secondary CO is about an order5

of magnitude lower. If the NEMR is corrected for 24% chemical CO loss the obtained
value of 1.5 mmol/mol is close to what is reported for fresh biomass burning emissions.

The NEMRs of methanol and acetone found during MINOS (Table 2) are significantly
higher than what was found in previous studies; methanol is enhanced by a factor of
2–6, and acetone by a factor of 3–14. Photochemical degradation of CO can by no10

means explain these discrepancies, as the lifetimes of both acetone and methanol are
shorter than that of CO. Therefore our results strongly indicate secondary production
of methanol and acetone in biomass burning plumes and support recent measure-
ments by Jost et al. (2003) who found fast chemical production of acetone in a fresh
biomass burning plume over Namibia. Assuming an annual carbon monoxide emission15

of 663–807 Tg (Bergamaschi et al., 2000) our results suggest a global biomass burn-
ing source of 25–31 Tg and 29–35 Tg for acetone and methanol, respectively. Com-
paring these numbers with global budget estimates for acetone (95 Tg/yr, Jacob et al.,
2002) and methanol (345 Tg/yr, Heikes et al., 2002) the biomass burning contribution
may be ∼25% and ∼10%, respectively. Most recently, Singh et al. (2004) estimated20

annual biomass burning sources of 9 and 11 Tg/yr for acetone and methanol, respec-
tively. Our results imply that oxidation processes in the plume are quite efficient, and
that secondary production dominates over primary emission for both compounds; the
mechanism for this oxidation, however, remains unclear.

Salisbury et al. (2003) compared acetone and methanol measurements made at the25

Finokalia station, Crete, August 2001, with the modelled concentrations of the MATCH-
MPIC (Model of Atmospheric Chemistry and Transport, Lawrence et al., 2002). Al-
though the modelled and measured acetone and methanol were well correlated, the
model underestimated concentrations significantly. Part of this discrepancy can proba-
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bly be resolved by initialising the model with higher production factors as is suggested
by our measurements.

As far as we know, there are no studies assessing a production rate of PAN from
biomass burning, although it has been reported as a secondary product in biomass
burning plumes (Mauzerall et al., 1998; Talbot et al., 1999). Considering the ther-5

molability of this compound, however, we refrain from a global extrapolation for PAN
production in biomass burning plumes (which would be of the order of 29–35 Tg/yr).

3.2. Acetonitrile mixing ratios

Mixing ratios and a statistical evaluation of acetonitrile are shown in Fig. 3. At the
lowest two altitude levels significantly lower average than median mixing ratios were10

observed. From trajectory analysis (Traub et al., 2003) we can exclude that these air
masses had been recently mixed with clean background air, so we conclude that the
variability in the lowest 4 km of the troposphere was higher due to a stronger influence
from biomass burning sources and uptake into the sea. Interestingly, the variability was
also higher at altitudes above 11 km. Again based on trajectory analysis we attribute15

this to fresh pollution advected from the convective monsoon regions in South Asia,
where biofuel use is common (Scheeren et al., 2003). Figure 4 shows acetonitrile mix-
ing ratios in the marine boundary layer and average sea surface temperature (SST) in
August 2001 (Smith et al., 2003). The lowest acetonitrile mixing ratios were measured
during a flight to the west of Sardinia. A potential reason for this can be found ∼200 km20

upwind, where acetonitrile was likely deposited into the sea over an extended zone
of relatively cool, upwelling water. Similar observations were made by (Warneke and
de Gouw, 2001) over the western Indian Ocean. From our data we do not see clear
evidence for ocean uptake in other regions. Acetonitrile may still be taken up over the
Eastern Mediterranean Ocean but the uptake may be masked by continuous advection25

of biomass burning emissions. However, if acetonitrile is not biochemically removed in
the seawater, ocean uptake (or release) of acetonitrile would basically be a function of
sea surface temperature. In this case the ocean would only acts as reservoir and ace-
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tonitrile could be emitted from warmed up seawater as has been recently suggested
by Sanhueza et al. (2004) to explain high acetonitrile concentrations over a Venezue-
lan savanna. This is also supported by results from a ship cruise across the tropical
Atlantic; most time water concentrations of acetonitrile were found to be in equilibrium
with air concentrations (Williams et al., 2004).5

Based on the trajectory analysis by Traub et al. (2003) we split the dataset into
4 sub-sets (North Atlantic, Western Europe, Eastern Europe, and South Asia) ac-
cording to the source region of the air masses; typical acetonitrile mixing ratios
are presented in Table 3. From this analysis we infer that average mixing ratios
of 140–150 pmol/mol are prevalent throughout the troposphere. Singh et al. (2003)10

measured average acetonitrile mixing ratios of 149 pmol/mol at altitudes of 0–12 km
over the Pacific Ocean (February–April, 2001 – just some months before MINOS);
this is in excellent agreement with our results from the Eastern Mediterranean. As-
suming an annual biomass burning source of 1.3±0.65 Tg acetonitrile per year (An-
dreae and Merlet, 2001) and an average concentration of 150 pmol/mol a lifetime of15

∼6±3 months can be calculated; equal to the ratio obtained by dividing the tropo-
spheric burden by the annual source. Considering a global mean HO concentration
of 1.16×106 molecules cm−3 (Spivakovsky et al., 2000) and a reaction rate constant of
1.4×10−14 cm3 molecules−1 s−1 (Atkinson et al., 1997 and T=266 K) the photochemical
lifetime of acetonitrile is ∼2 years. Therefore, dry deposition to land and/or sea surfaces20

likely is the dominant sink for acetonitrile.

4. Conclusions

In the course of the MINOS campaign 10 biomass burning plumes were identified over
the eastern Mediterranean. The NEMRs of acetone and methanol obtained from these
plumes were higher than those observed in controlled experimental fires, whereas a25

lower production factor was measured for CO. We infer secondary production of ace-
tone and methanol in the biomass burning plumes, while CO is subject to net photo-
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chemically removal in the plumes.
Acetonitrile mixing ratios have been measured over the Eastern Mediterranean at

altitudes of 0–13 km. Given that current biomass burning inventories are correct, av-
erage concentrations are consistent with a lifetime of ∼6±3 months. Therefore other
sinks must dominate over photochemical degradation, most likely dry deposition over5

land and/or sea.
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Table 1. Time, position and NEMRs of biomass burning plumes encountered during MINOS.

Time Position Alta acetonitrileb Methanolc acetonec PANc COc

14. Aug. 37.0 N, 1.9 250 26.4 2.1 −1.1 476
06:21 24.3 E
14. Aug. 37.3 N, 3.7 203 24.1 14.1 5.5 733
12:55 26.2 E
14. Aug. 37.4 N, 1.7 206 20.7 16.8 6.1 792
13:14 26.1 E
17. Aug. 35.4 N, 2.0 192 24.9 19.2 2.0 907
14:15 26.1 E
19. Aug. 35.3 N, 1.9 243 18.7 8.6 1.7 477
10:46 25.9 E
19. Aug. 36.4 N, 1.3 211 17.2 10.0 6.5 n.m.
15:44 20.7 E
19. Aug. 35.3 N, 1.8 237 12.4 4.6 0.8 556
16:29 25.4 E
22. Aug. 38.7 N, 9.9 180 13.7 8.7 3.2 160
05:52 18.4 E
22. Aug. 40.7 N, 4.6 155 14.1 9.2 5.8 381
10:32 7.6 E
24. Aug. 40.2 N, 11.1 214 24.5 12.6 3.4 467
08:17 18.0 E

geometric meand 19.0 9.1 3.2 498
a Altitude in km
b Average volume mixing ratio of acetonitrile in the plume in units of pmol/mol
c Normalized excess mixing ratio (NEMR) in units of mol/mol
d Geometric mean of individual NEMRs; negative values have been omitted
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Table 2. Emission ratios and NEMRs based on CO (mmolVOC/molCO).

Fuel Type methanol acetonitrile acetone PAN
this study1

not identified 38 2.0 18 6.5
(Holzinger et al. 1999)

savanna grass 6.4 1.3 5.4
(Christian et al. 2003)

African savanna fuels 15 1.2 1.3
Indonesian fuels 24 6.5 4.6

(Andreae and Merlet 2001)
savanna and grassland 18 1.2 1.9–4.6

extratropical forest 16 1.2 2.3–2.7

agricultural residues 19 1.3 3.3

1 These values have been calculated from the mean NEMRs in Table 1.
E.g. NEMRmethanol=1000*24.9/569=43.8
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Table 3. Typical mixing ratios (pmol/mol) of acetonitrile in air from different source regions.

All Data North Atlantic1 Western Europe1 Eastern Europe1 South Asia1

percentiles:
33% 140 138 123 168 135
50% 150 145 140 185 145
66% 163 153 158 200 155
Average 156 147 141 186 147

1 Source regions according to Traub et al. (2003).
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Fig. 1. Flight tracks and location of biomass burning plumes.
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Fig. 2. An example biomass burning signature. Usually good correlation of acetonitrile with
CO, acetone, methanol and PAN was observed in biomass burning plumes.
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Fig. 3. Height profile of acetonitrile with a statistical evaluation of the data points at different
altitudes.
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Fig. 4. Acetonitrile mixing ratios in the marine boundary layer, and the average sea surface
temperature (SST) in August 2001 obtained from the NOAA/NASA Pathfinder Program (Smith
et al., 2003).
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